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A B S T R A C T

The real-time and high-precision detection methods on embedded platforms are critical for harvesting robots to
accurately locate the position of the table grapes. A novel detection method (ESP-YOLO) for the table grapes in
the trellis structured orchards is proposed to improve the detection accuracy and efficiency based on You Only
Look Once (YOLO), Efficient Layer Shuffle Aggregation Networks (ELSAN), Squeeze-and-Excitation (SE), Partial
Convolution (PConv) and Soft Non-maximum suppression (Soft_NMS). According to cross-group information
interchange, the channel shuffle operation is presented to modify transition layers instead of the CSPDarkNet53
(C3) in backbone networks for the table grape feature extraction. The PConv is utilised in the neck network to
extract the part channel’s features for the inference speed and spatial features. SE is inserted in backbone net-
works to adjust the channel weight for channel-wise features of grape images. Then, Soft_NMS is modified to
enhance the segmentation capability for densely clustered grapes. The algorithm is conducted on embedded
platforms to detect table grapes in complex scenarios, including the overlap of multi-grape adhesion and the
occlusion of stems and leaves. ELSAN block boosts inference speed by 46% while maintaining accuracy. The mAP
@0.5:0.95 of ESP-YOLO surpasses that of other advanced methods by 3.7%–16.8%. ESP-YOLO can be a useful
tool for harvesting robots to detect table grapes accurately and quickly in various complex scenarios.

Nomenclature

Abbreviations

AP average precision
C3 CSPDarkNet53
CBAM Convolutional Block Attention Module
ELAN Efficient Layer Aggregation Networks
ELSAN Efficient Layer Shuffle Aggregation Networks
FLOPs floating-point operations
FN False Negative
FP False Positive
IoU Intersection over Union
mAP mean average precision
NMS Non-Maximum Suppression
PConv Partial Convolution
SE Squeeze-and-Excitation
Soft_NMS Soft Non-maximum suppression
TP Ture Positive
YOLO You Only Look Once
Symbols

(continued on next column)

(continued )

Abbreviations

α - IoU Loss Function
σ Penalty Coefficient.
bi Compared Bounding Boxes
M Bounding Box with The Highest Confidence
Nt Threshold Generally
Si Confidence Score of The Bounding Box

1. Introduction

Table grapes are widely planted in the world, especially in China
(Khan et al., 2020; Wu et al., 2016). However, the harvest is mainly done
by hand with labour-intensive and time-consuming. The harvesting
robot for table grapes is an increasingly hot issue to replace skilled
humans. The detection is a complicated process for table grape har-
vesting robots due to ensure table grape integrity. However, some
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detection methods are not easy to apply on table grapes harvesting ro-
bots due to the low detection permission in various complex scenarios,
including overlap and occlusion. In addition, the detection methods are
required to be run on embedded platforms for the harvesting robot
because of the limited space, which easily results in low inference rates.
It is essential to investigate the detection method for the performance
improvement of detection accuracy in the harvesting robot.

Many detectionmethods were proposed to solve the problems in fruit
detection, such as visual inspection, hyperspectral analysis, acoustic
detection and chemical analysis (Abbaszadeh et al., 2013; Egea et al.,
2021; Marin-San Roman et al., 2023). It is difficult for acoustic detection
and chemical analysis to locate the fruits due to the low recognition
ability for the fruits location with ambient interferences. A few re-
searchers employed hyperspectral analysis in fruit detection to improve
the location performance (Safren et al., 2007; Y. Zhang et al., 2019).
Okamoto and Lee (2009) designed a hyperspectral-based detection
method to detect small fruits by comparing the hyperspectral informa-
tion of citrus leaves and fruits. Wouters et al. (2013) developed a mul-
tispectral vision sensor with informative wavebands for the location of
flower buds on trees. Steinbrener et al. (2019) presented a
hyperspectral-based convolutional neural network to classify fruits and
vegetables. However, these hyperspectral analysis methods are difficult
to be integrated into a real-time recognition system due to the large
computation burden. Moreover, the hyperspectral camera is extremely
expensive for a large-scale application in harvesting robots. The visual
inspection is a common approach for fruit identification with the low
cost of apparatus, consistency, high speed and accuracy, such as image
processing and machine learning (Taghadomi-Saberi & Hemmat, 2015).

Image processing is a general method to detect objects, which can be
used to recognise and locate fruits. Many researchers proposed colour-
based, geometric-based and texture-based segmentation methods to
detect various fruits, such as tomatoes, red apples, peaches, mangoes
and pineapples (Chaivivatrakul & Dailey, 2014; B. Li et al., 2010; Payne
et al., 2013; Qiang et al., 2014; R. Zhou et al., 2012). Xiong et al. (2017)
proposed an Otsu algorithm with the Canny edge detection to determine
the location of swaying grapes in space. Ji et al. (2016) presented a
segmentation method with an adaptive histogram equalisation to
distinguish between apples and branches. Jin et al. (2022) designed a
vision method to accurately locate the picking point of table grapes via
feature extraction from far-range images and close-range images. Xiong
et al. (2018) developed a segmentation method for the swaying litchi
clusters to detect harvesting points with fuzzy C-means clustering and
binocular visual stereo matching. However, image processing is difficult
to apply in harvesting robots due to the uncertain thresholds resulted
from complex scenarios with lighting conditions and plant growth.

Currently, many machine learning methods for the harvest robots
were explored to locate the fruits (Bulanon et al., 2004; Domingues
et al., 2022; Kuznetsova et al., 2020; Linker et al., 2012). Tang et al.
(2017) proposed a convolutional neural network with a k-means feature
to recognise weeds in soybean seedling fields. Luo et al. (2018) used
k-means clustering and profile analysis to detect the cutting points of the
overlapping grapes. However, these conventional machine learning
methods easily result in low-precision detection in complex scenarios
due to the feature extraction by human intervention. Yuhao Bai et al.
(2022) designed a multi-network fusion algorithm with a data process-
ing, target recognition network and semantic segmentation network for
the detection of matured cucumbers in a non-structural scene. Yifan Bai
et al. (2024) proposed a YOLOv7 algorithm with a Swin Transformer to
detect strawberries with a mAP of 92.1%. Although some detection
methods are used to detect individual fruit, these approaches struggle
with table grape clusters due to the complex geometric features in the
obscure scenario. Xu et al. (2022) presented Mask R–CNN to accurately
recognise cherry tomatoes with a fruit and stem accuracy of 93.76% and
89.34%, respectively. Q. Zhang and Gao (2020) improved Faster R–CNN
with multi-scale feature maps to extract small stalks for grape clusters
received an average precision of 92.07%. Although these methods

perform high detection accuracy, they cannot be applied to the har-
vesting robot because of the large computational burden. Thus, it is
necessary to study lightweight YOLO, especially for embedded systems.
Shang et al. (2023) proposed a lightweight YOLOv5s algorithm with
Shuffle Net and Ghost Net to detect apple flowers at 2.48 fps on
embedded platforms. H. Li et al. (2021) presented a lightweight
YOLOv4-tiny algorithm to detect the grapes with a mAP of 92.1%.
Although they used lightweight modules to reduce the parameters, these
algorithms still obtain low detection accuracy with low inference speed
for grape harvesting robots.

The objective of this study is to investigate a novel detection algo-
rithm (ESP-YOLO) on embedded platforms for the grape harvesting
robot to improve detection accuracy and speed. Efficient Layer Shuffle
Aggregation Networks (ELSAN) are proposed to replace C3 blocks in
backbone networks to enhance feature extraction of table grapes. Pconv
is used to replace the convolution operations in the network to reduce
parameter numbers and capture spatial features. ELSAN and Pconv are
combined to try to improve inference speed on embedded systems.
Squeeze-and-excitation (SE) is integrated to improve YOLO for channel-
wise feature interaction. According to the channel-wise and spatial
features, the location and quantities of SE in ESP-YOLO are optimised to
reduce Instance-level noise. SE and Soft Non-maximum suppression
(Soft_NMS) enhance the segmentation ability of table grapes to improve
recognition precision under overlapping and occluding conditions. The
experiments are conducted to verify the performances of ESP-YOLO on
embedded platforms with grape images involved with the overlap, oc-
clusion and distant shot.

2. Materials and methods

2.1. System overview

The hardware configuration for the harvesting robot includes an

Fig. 1. Hardware of harvesting robot.

Table 1
Experimental platform.

Items Train Parameters Test Parameters

CPU Intel(R) Core (TM) i5-13600 K ARMv8 Processor
GPU NVIDIA GeForce RTX 3070 NVIDIA Tegra X1
Operating System Windows 10 Ubuntu18.04
Acceleration environment CUDA11.7 CUDA 10.2
Development Platform torch-1.12.1 torch-1.7.0
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Fig. 2. Grapes images in the trellis structured orchards including occluded grapes(a), overlapped grapes(b) and distant shot of grapes(c).

Fig. 3. Structure diagram of ESP-YOLO.
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Intel Realsense D435I camera, Jetson Nano, UR5 robotic arm and a
wheeled-locomotion mechanism, as illustrated in Fig. 1. The D435I
depth camera supplies RGB images and depth images of the grapes for
the embedded system. ESP-YOLO which trained on a computer de-
termines the three-dimensional coordinates via the real-time image from
the camera in the Jetson Nano. The main specifications of the computer
and the embedded platforms are in Table 1. Then, the grapes position
information is served as the input for the control system of the robotic
arm and wheeled locomotion mechanism to accomplish the harvesting
task. The harvesting robot in real-scenario experiments can be used to
verify the proposed method.

2.2. Image acquisition and labelling

In the study, the table grapes are planted in trellis-structured or-
chards. The Shine Muscat grapes are chosen to be recognised because of
the separation difficulty from the background with their similar green
colour. The images of table grapes during the harvest period in the
greenhouse were acquired by Huawei Mate 40 and Intel Realsense
D435I camera on 22 July and 7 August 2022 in Nanxun County, Huzhou
City, Zhejiang Province, China. The dataset was collected on different
dates to minimise the impact of subtle variations in the grapes during the
maturity stage. Since the depth camera cannot obtain high-resolution
images, we chose the images from mobile phones as the training and
validation datasets. The grape images are taken from the spot distances
in different directions with 0.5–0.8 m (close shot) and 0.8–2.5 m (distant
shot) under the condition of various scenarios, including the overlap and
occlusion (Fig. 2). 1431 images of table grapes with clear target contours
and textures are collected as the experimental dataset. 477 Images in the
experimental dataset are collected by a random rotated mobile phone
with the angle range of -30-30◦ to add the rotation features of grape
images in the dataset, which can be used to decrease the impact on
image rotation. Additionally, 270 images of table grapes from the depth
camera are used for transfer learning to verify the detection algorithm
on the harvesting robot in real scenarios. The public dataset of grapes is
chosen to test the robustness of the algorithm (Santos et al., 2020).

In the experimental dataset, 332 images are selected as the test
dataset, including the scenario of overlap, occlusion and distant shot.
The rest 952 and 147 images are randomly selected as the training
dataset and the validation set, respectively. Since the dataset with suf-
ficient sample images is a prerequisite for the deep neural networks,

some image processing techniques such as noise enhancement, bright-
ness change, rotation and mirroring are employed to augment data for
the set diversity of the table grape. Furthermore, the grape images are
rotated for augmented data to reduce the impact of different camera
angles on identification accuracy. The grapes images were manually
labelled via LabelImg with well-fitted rectangular frames. According to
our skill knowledge, we depicted the actual size of the targets blocked by
branches and leaves or other grapes in the solid box (Fig. 2). The labelled
files are stored in the PASCAL VOC format for the dataset.

The training and validation datasets and the labelled file are used to
train ESP-YOLO. The test dataset is used to evaluate the performance of
ESP-YOLO. The images in the test dataset with overlap, occlusion and
distant shots scenarios are selected to construct three separate sub-test
datasets, including the overlapping dataset, occlusion dataset and
distant shot dataset.

2.3. ESP-YOLO construction

The accuracy, real-time and lightweight of the model are the key
factors in the vision system of the harvesting robots. YOLOv5 is a small
size model with fast inference speed and an acceptable detection accu-
racy in computers. YOLOv5 structure divides into the backbone network
for feature extraction, the neck network for feature fusion and the head
network for anticipation in the solid red box in Fig. 3.

In backbone networks, CBS and C3 blocks are used for down-
sampling and feature extraction. However, YOLOv5 is hard to run on
embedded platforms due to the low inference speed resulted from the
burdensome backbone network. In the study, ELSAN replaced CBS and
C3 to extract the deeper features information with the lower floating-
point operations (FLOPs) (in the dotted red box in Fig. 3) and SE is
used to heighten the weight of useful features in the backbone network.
In the neck network, C3P enhances the inference speed with high
detection accuracy instead of C3_False.

2.4. Lightweight network

In this study, ELSAN is modified to replace the CBS and C3withmany
res units and transition layers in Fig. 4. The res unit generally needs a
large training set to extract features effectively. However, it is a
complicated task to acquire the huge training set of table grapes.
Moreover, the res unit and transition layers can weaken the ability for

Fig. 4. Structure diagram of ELSAN.
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parallel computing resulted from raised memory access, which is an
important factor for the embedded platforms.

Efficient Layer Aggregation Networks (ELAN) consist of the cross-
stage connection and the stack computational block. The cross-stage
connection block can achieve the shortest path for faster inference
speed (Wang, Liao, & Yeh, 2023). The stack computational block can
enrich the gradient information to improve the learning capacity. Thus,
ELAN can replace C3 to enhance the network depth for the feature
extraction capabilities. However, YOLO sets channel numbers for each
layer, which results in redundant transition layers in ELAN and CBS in
the backbone network. The redundant operations in these transition
layers greatly extend the computational burden, herein, these redundant
transition layers in ELSAN are deleted to reduce FLOPs. Owing to the
weaker interaction of channels resulted from the removal of transition
layers, the channel shuffle operation is inserted in ELSAN to remedy
cross-group information interchange.

The lightweight convolution is a popular method to deal with
redundant feature maps, such as PConv (Chen et al., 2023). PConv
efficiently extracts features via the convolution of a subset of the total
channels. Although PConv can ignore some features, it can improve
inference speed for applications on embedded platforms with limited
memory and computation resources. The feature map of input size H×

W × M is split into the feature maps of size H × W × C (part A) and H×

W × (M − C) (part B). After convolution operations, part A is directly
connected to part B for the feature map in Fig. 5. However, PConv is not
applied in the backbone network to extract the features due to the
reduced information in the inter-channel. C3P based on PConv and
PWConv is inserted in the neck network to capture spatial features. The
channel number C in C3P can affect FLOPs and the spatial features.
Then, C is set as M/4 (Chen et al., 2023). Thus, the YOLO network is
improved by using ELSAN and C3P for a lightweight network on
embedded platforms.

2.5. Channel attention mechanism

The instance-level noise easily occurs in the images for the over-
lapping grapes due to the intra-class feature coupling and the inter-class
feature boundary blurring. Since ELSAN reduces the information of
feature extractions, the instance-level noise in the images is hard to
remove, such as overlap, occlusion and small grapes. Then, the attention
mechanism should increase the weight of the useful features to reduce
the instance-level noise with the fewer feature information.

Based on global pooling and sigmoid, the squeeze-and-excitation
(SE) block is able to get global information and adjust the feature
weights adaptively(Hu et al., 2020). SE is a universal block in the
network to extract more useful features, which is integrated into C3
(SEC3) to connect YOLO blocks. Although SEC3 can increase the
computational volume slightly, the appropriate locations and quantity
of SEC3 in the networks drop down the interferences of instance-level
noise significantly. Meanwhile, the depth of channel-wise features

relies on SEC3 locations. According to the YOLO structure characters,
SEC3 is inserted between ELSAN and SPPF(ESEP-YOLO), in each
down-sampling stage (EDP-YOLO) and each down-sampling and
up-sampling stage (EDUP-YOLO), respectively (Fig. 6). The three
improved YOLO networks with SCE3 the are compared on detection
accuracy in the experiments.

2.6. Soft Alpha_NMS algorithm

A series of prediction boxes as the detected table grapes can be ob-
tained by using the improved YOLO network. In the inference phase,
Non-Maximum Suppression (NMS) algorithm can be used to calculate
their Intersection over Union (IoU) of prediction boxes for detection
results with the highest IoU. However, some prediction boxes of the
table grapes with low IoU are also recognised accurately and cannot be
removed, especially in occlude and overlap scenarios. Thus, Soft_NMS is
more suitable for occlude and overlapping scenes because of the
retained prediction boxes with higher IoU than the threshold, instead of
the highest IoU in NMS (Bodla, Singh, Chellappa, & Davis, 2017a).
Nevertheless, Soft_NMS increases the post-processing time during the
inference phase. To enhance the efficiency and robustness of Soft_NMS,
α-IOU has been introduced to determine the confidence score of the
bounding box Si (He et al., 2021). Soft Alpha_NMS is defined as,

Si =

⎧
⎪⎨

⎪⎩

Si α − IoU(M, bi) < Nt

Sie−
α− IoU(M,bi)

2

σ α − IoU(M, bi)⩾Nt

(1)

where M is the bounding box with the highest confidence, bi denotes the
compared bounding boxes in the current target, Nt is the threshold
generally set to 0.5, α - IoU (M, bi) is the loss function and σ is the penalty
coefficient.

The positions and quantities of SE have been determined according
to the comparison of detection precision from datasets of table grapes.

Fig. 5. Structure diagram of C3P.

Fig. 6. Structure diagram of SE.
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Then, the improved SE is integrated with ELSAN, C3P and Soft
Alpha_NMS (ESP-YOLO) is proposed to detect the table grapes on
embedded platforms.

2.7. Evaluation indicators

ESP-YOLO is trained by the training and validation sets on a com-
puter to generate weight files. The setting hyperparameters in train
process are listed in Table 2. Then, the weights file is transferred to an
embedded platform to recognise the table grapes in the experiments.
The ablation experiment is conducted to assess the performance of the
different modules in Section 2. The performance of ESP-YOLO is
accessed on test datasets in terms of detection precision and speed,
including occlusion subset, overlap subset, distant shot subset and et al.
Its robustness is also tested on publicly available datasets. Finally, the
proposed method is verified by a harvesting robot of the table grapes in
actual scenarios.

The performance of detection algorithms can be evaluated by using
recall, precision, F1-score, AP, inference speed and total network pa-
rameters, which are defined as,

Recall=
TP

TP+ FN
(2)

Precision=
TP

TP+ FP
(3)

F1 − score=
2Precision × Recall
Precision + Recall

(4)

AP=

∫ 1

0
P(R)dR (5)

mAP=

∑k
i=1AP
k

(6)

where true positive (TP), false positive (FP) and false negative (FN) are
the number of true positive samples, false positive samples and false
negative samples, respectively. AP is the area enclosed by the Precision-
Recall (PR) curve and the coordinate axis with the range of 0–1. R is the
integral variable of the product of recall and precision and mAP is the
average AP under all categories. The mAP@0.5 is the mAP as the IoU
threshold is 0.50. The F1-score and mAP perform comprehensive metrics
of recognition precision, recall and localisation accuracy. Then, the
performance of ESP-YOLO can be accessed in terms of the F1-score,
mAP@0.5 and mAP@0.5:0.95.

3. Results

3.1. Network improvement ablation experiments

ELSAN only replaces the C3 and CBS blocks in the backbone network

(E-YOLO). According to the test dataset, E-YOLO results are showed in
Table 3. The inference speed of E-YOLO is 48% faster than YOLOv5s,
thanks to the reduction in computational burden resulted from the
removal of redundant transition layers and residual units. Although
ELSAN obtains larger FLOPs in compare to Mobilenet (Howard et al.,
2019), the inference speed of ELSAN is faster than Mobilenet. The
detection accuracy of E-YOLO is nearly identical to that of YOLOv5s,
whereas the other lightweight networks lead to a decrease in the
detection accuracy.

In the test dataset, these results of ESEP-YOLO, EDP-YOLO and
EDUP-YOLO are shown in Table 4 and Fig. 7. ESEP-YOLO improves the
mAP@0.5 and mAP@0.5:0.95 of 1.2% and 2.9% than EDP-YOLO and
EDUP-YOLO due to the fewer false alarm in the solid box (Fig. 7). The
reason is that too many SEC3 blocks in EDP-YOLO and EDUP-YOLOmay
focus excessively on some specific local information instead of global
information. Although EDP-YOLO and EDUP-YOLO identify more
grapes within the dashed boxes in Fig. 7 (b) and (c), their localisation of
the table grapes is not totally accurate. Thus, an SEC3 block between
ELSAN and SPPF effectively extracts single-layer channel-wise features
with deep semantic information.

A comparison of various modified strategies is presented in Table 5.
The combined ELSAN and C3P accelerate the inference speed by 68.9%
in contrast to YOLOv5s due to the improvement to diminish FLOPs in
Section 2.4. C3P or SE separately inserted in E-YOLO does not increase
accuracy. However, YOLOv5 combined with SE and C3P increases mAP
@0.5:0.95 by 1.6%. Although Soft Alpha_NMS inevitably increases the
inference time, the mAP@0.5:0.95 is improved by 6.2% due to the more
accurate criteria for NMS in Section 2.6. Table 6 can be concluded that
Soft_NMS can achieve better detection accuracy if α is 1. Despite of a
12% decrease in the inference speed of ESP-YOLO in contrast to EP-
YOLO, the mAP@0.5:0.95 and inference speed are improved by 9.8%
and 48.6% in contrast to those of YOLOv5s, respectively. Therefore,
ESP-YOLO is an efficient network for table grapes detection concerning
high accuracy and speed.

3.2. Results in deference scenarios

According to the overlap, occlusion and distant shot test datasets, the
results of ESP-YOLO and YOLOv5s are shown in Table 7 and Fig. 8. In all
test datasets, ESP-YOLO significantly improves mAP@0.5 by 1% and
mAP@0.5:0.95 by 10% for table grapes detection. In the overlap test
dataset, the mAP@0.5:0.95 of ESP-YOLO is increased by 4.6% due to the
reduced miss detections in the dotted box (Fig. 8) resulted from the
separation capabilities of SE and Soft Alpha_NMS. In the distant shot,
compared with YOLOv5s, ESP-YOLO achieves a 4.5% increase of
mAP@0.5. ESP-YOLO’s detection accuracy is better than YOLOv5 in the

Table 2
The hyperparameters in the training process.

Hyperparameter Epochs Batch
Size

Momentum Weight
Decay

Learning
Rate

Value 120 4 0.937 0.0005 0.01

Table 3
Detection results of four different backbone networks.

Backbone mAP @0.5 (%) mAP @0.5:0.95 (%) F1-score FLOPs (G) Memory access(M) Parameters (M) Inference Time (ms)

C3 88.6 57.6 0.874 16.4 156.4 6.69 136.2
Mobilenet 87.3 55.9 0.852 6.1 156.4 3.36 93.6
Ghostnet 88.9 57.5 0.868 8.2 155.5 3.51 117.9
ELSAN 88.7 57.6 0.873 10.8 105.7 5.26 93.0

Table 4
Detection results of ESP-YOLO, EDP-YOLO and EDUP-YOLO.

Model mAP@0.5
(%)

mAP@0.95
(%)

F1-
score

FLOPs
(G)

Inference time
(ms)

ESEP-
YOLO

89.4 59.5 0.876 9.5 86.2

EDP-
YOLO

88.3 57.8 0.868 12.5 92

EDUP-
YOLO

88.3 57.8 0.862 15.4 95
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complex scenario.
According to the public grape dataset, the detection results for ESP-

YOLO and YOLOV5s are shown in Fig. 9. The red box, red circle and red
dashed circle in Fig. 9 illustrates that ESP-YOLO performs superior
detection accuracy compared to YOLOv5 in overlap, occlusion and
distant shot scenarios, which is similar to custom datasets results.
Meanwhile, ESP-YOLO is more generalisation and robust than YOLOv5.

3.3. Comparison of different methods

According to the test dataset, the results of ESP-YOLO, Faster R–CNN
(Ren et al., 2015), SSD (Liu et al., 2016), YOLOv5s, YOLOv5-Mobile
(Zeng, Li, Song, Zhong, & Wei, 2023), YOLOv7-Tiny (Gu et al., 2023),
YOLOv8n (Yang et al., 2023), YOLO-Grape (Li et al., 2021),
YOLOv5-CFD (Zhu et al., 2023) and SM-YOLOv4 (Qiu et al., 2022)are
shown in Table 8. YOLOv8n, YOLO-Grape, YOLOv5-CFD, and
SM-YOLOv4 are run on Jetson Xavier Nx due to their high hardware and
software requirements (Python 3.8).

The model sizes of detection algorithms based on YOLO are less than
30 MB except YOLOv5-CFD, which is easy to be operated on embedded
platforms. Then, the slow inference speed of algorithms is a key factor in
the deployment of embedded platforms. The inference time of Faster-
RCNN and SSD for each image is more than 1000ms, which cannot be
used on embedded platforms. The detection speed of ESP-YOLO is much
greater than other table grape detection algorithms. Compared to other
lightweight methods, the inference speed of ESP-YOLO is faster by
2.8%–83% on the Jetson Nano benefited from the improvements to
match the embedded platforms in Section 2.4.

The mAP@0.5:0.95 of ESP-YOLO surpasses that of YOLOv7-Tiny by
8.8% benefited from the precision segmentation of overlapping grapes
in the dotted box and solid box (Fig. 10). The mAP@0.5:0.95 of ESP-
YOLO is enhanced by 13.4% in contrast to YOLOv5-Mobile due to the
less miss detection in distant shot scenarios. The mAP@0.5:0.95 of ESP-
YOLO is 3.7%–16.7% than other table grape detection algorithms due to
the increased segmentation capacity via SE, C3P and Soft Alpha_NMS.
The mAP@0.5:0.95 of ESP-YOLO is 5.5% higher than that of YOLOv8n
with the same detection speed. Thus, Considering the detection speed
and accuracy, ESP-YOLO outperforms these advanced algorithms.

3.4. Real scenarios experiments

The real-time embedded system runs on a harvesting robot to pick
the table grapes. The trained ESP-YOLO is implemented into the
embedded system to detect table grapes in a variety of work tasks, such

Fig. 7. Detection results of ESP-YOLO with (a) before SPPF, (b) in down-sampling and (c) in up-sampling and down-sampling.

Table 5
Ablation study of ESP-YOLO.

Model name mAP@0.5
(%)

mAP
@0.5:0.95
(%)

F1-
score

Inference
time(ms)

YOLOv5s YOLOV5s 88.6 57.6 0.874 136
+ELSAN E-YOLO 88.7 57.6 0.873 93.0
+ELSAN +

C3P
EP-YOLO 88.7 57.6 0.872 80

+ELSAN +

SE
ES-YOLO 88.2 58.0 0.875 95

+SE + C3P SEP-
YOLO

88.9 58.5 0.88 108.1

+ELSAN +

C3P + SE
ESEP-
YOLO

89.4 59.6 0.877 86.2

+ELSAN +

C3P + SE
+

Soft_NMS

ESP-
YOLO

89.4 63.3 0.876 90

Table 6
Detection results of different α

α 0.5 1 2 3 4 5

mAP@0.5 88.7 89.4 88.5 89.4 88.9 89.1
mAP@0.5:0.95 62.1 63.4 62.8 63.2 62.9 62.6
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as moving and harvesting operations. The frame rate of D435I camera is
configured as 20 fps, which continuously transmits grape images after
preprocessing as input for ESP-YOLO. Image comparison methods and
masking of image operation are used to preprocess the images from
D435I to improve detection speed. Finally, Edge detection in the depth
images is used to identify picking points and the Visual Serving control
method is employed to execute the harvesting tasks (Y.-R. Li et al., 2023;
Yan et al., 2021).

ESP-YOLO and YOLOv5s are conducted on a harvesting robot in a
grape greenhouse, which results are shown in Fig. 11, Fig. 12 and
Table 9. The average detection time of the system is 45 ms.

The mAP@0.5:0.95 of ESP-YOLO is 5.7% higher than that of

YOLOv5s due to a reduction in miss error detection in the solid box
(Fig. 11). Fig. 12 demonstrates ESP-YOLO accurately recognises and
locates the grape clusters in various scenarios including overlap, front
light, backlight, distant shot et al. The table grapes are accurately
identified and segmented, except for those far beyond the harvesting
robot’s workspace. Therefore, ESP-YOLO on an embedded platform can
detect the table grapes accurately and quickly for the harvesting task of a
robot.

4. Discussion

The aforementioned results demonstrate that the proposed method

Table 7
Detection results of ESP-YOLO and YOLOv5s in different scenarios.

Test dataset Model mAP@0.5(%) mAP@0.5:0.95(%) Precision(%) Recall(%) F1-score

all YOLOv5s 88.6 57.6 93.2 83 87.4
ESP-YOLO 89.4 63.4 93.7 82.3 87.6

overlap YOLOv5s 83.4 51.9 81.5 83.4 82.4
ESP-YOLO 90.3 54.3 89.5 88.5 88.9

occlusion YOLOv5s 89.8 59.3 92.3 85.0 88.5
ESP-YOLO 91.2 59.6 91.4 88.3 89.8

distant shot YOLOv5s 81.6 50.2 84.1 76.7 80.2
ESP-YOLO 85.3 51.1 89.6 76.7 82.6

Fig. 8. Detection results of YOLOv5s and ESP-YOLO. (a) and (b) YOLOv5s in distant shot scenarios; (c) and (d) YOLOv5s in overlap scenarios; (e) and (f) ESP-YOLO
in distant shot scenarios; (g) and (h) ESP-YOLO in overlap scenarios.
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in this study achieves high accuracy and inference speed. Subsequent
sections will delve into the significance of these findings and explore
their potential applications. To gain deeper insights into ESP-YOLO’s
performance, we conduct an extensive analysis of the experimental data
with respect to detection accuracy and inference speed.

4.1. Evaluation in overlap scenarios

The efficiency and accuracy of grape harvesting robots primarily
depend on the capability of grapes reconisation and location in their
vision systems. Owing to the irregular shapes of grapes unliked the ap-
ples, mangoes, and kiwis. It is a challenging task for grape harvesting
robots to detect grapes in overlapping scenarios. The attention mecha-
nism and NMS are able to enhance the grapes identification in over-
lapping scenarios due to instance-level noise suppression. CBAM can
extract spatial and channel features, which is utilised to identify over-
lapping grapes (Zhu et al., 2023). Another study utilised Soft-NMS and
SE attention mechanisms to obtain a notable 91.08% mAP in grape
detection (H. Li et al., 2021). However, these studies ignore the differ-
ences between the role of channel attention mechanisms and spatial
attention mechanisms, which resulted in the lower accuracy in Table 8.

It is necessary for the methods to effectively extract textural and
shape features because of the separation difficulty from the background
with their similar green colour. In this study, SE and Soft Alpha_NMS are
applied to segment the overlapping grapes. Table 10 demonstrates that
the mAP@0.5 of ESP-YOLO surpasses that of YOLO-CFD and YOLO-
Grape by 1.6%–4.2%. This improvement is attributed to the channel
features extracted from the deep network and the spatial features
extracted from the shallow network. Moreover, the results of the abla-
tion experiments show that channel features combined with spatial
features enhance the algorithm’s ability to detect grapes (Table 5). The
experiments demonstrate that the ESP-YOLO can mitigate the influence

Fig. 9. Detection results of YOLOv5s and ESP-YOLO in public grape dataset.

Table 8
Comparison results of different methods.

Model mAP@0.5
(%)

mAP@0.5:0.95
(%)

Inference time
(ms)

Model size
(MB)

Faster-RCNN 86.3 57.7 5030 108.2
SSD 88.5 55.7 6800 91.1
YOLOv5s 88.6 57.6 136 13.7
YOLOv5-
Mobile

87.3 55.8 93.1 7.1

YOLOv7-
Tiny

89.0 58.2 160.3 23.1

YOLOv8n* 88.4* 60.0* 34.1* 5.9
YOLO-Grape 87.8* 61.0* 54.8* 28.7
YOLOv5-
CFD

86.6* 54.2* 124* 33.0

SM-YOLOv4 88.2* 58.0* 103* 26.9
ESP-YOLO 89.4(89.4*) 63.3(63.3*) 90(36*) 11.2

Note: * The results are run on Jetson Xavier Nx.
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Fig. 10. Detection results under various complex scenarios with ESP-YOLO (a)–(c), YOLOv5-Mobile (d)–(f), YOLOv7-Tiny (g)–(i), YOLOv8n (j)–(l).
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of target overlap and occlusion, overcome interference caused by target-
background colour similarity, and effectively detect grapes in complex
scenes.

Fig. 11. Detection results of harvesting robot with YOLOv5s and ESP-YOLO. (a) and (b) YOLOv5s in distant shot scenarios; (c) YOLOv5s in overlap scenarios; (d) and
(e) EP-YOLO in distant shot scenarios; (f) EP-YOLO in overlap scenarios.

Fig. 12. Detection results of EP-YOLO under different real scenarios. (a) and (b) in overlap scenarios; (c) and (d) in front light scenarios; (e) in backlight scenarios; (f)
in distant shot scenarios.

Table 9
Detection results of YOLOv5s, E-YOLO, EP-YOLO and ESP-YOLO.

Model mAP@0.5(%) mAP@0.5:0.95(%) F1-score

YOLOv5s 92 59.2 0.90
ESP-YOLO 96.3 62.6 0.93
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4.2. Evaluation of the speed

Taking into account of the cost and portability, embedded platforms
are used as the computing core for the agricultural machinery. Conse-
quently, current research focuses on the improvement of detection
speed. Ghost Net is integrated into YOLO to efficiently detect white
asparagus with minimal computational resources (P. Zhang et al., 2024).
Another study highlighted LES-YOLO’s ability to identify pine cones at
115 frames per second on standard computers (Cui et al., 2023). These
studies confirm the lightweight models’ effectiveness such as Ghost Net
in the FLOPs reduction. However, these studies ignore the effect of
memory accesses on the inference speed (Ma et al., 2018). In this study,
aiming to the poor performance of embedded platforms, the memory
access is reduced by removing the transition layer in ELSAN. Table 3
shows the inference speed of Ghost Net is lower than that of ELSAN due
to the decreased memory. The experiments prove that ESP-YOLO can
improve the inference speed and quickly detect grapes on embedded
systems.

4.3. Current deficiencies and future studies

Although promising results are found in the preliminary models for
grapes detection exhibit, this study still has limitations. It is important to
note that while these overlapping grapes are successfully identified,
there is no guarantee of the identification accuracy in the situations of
more than three clusters of overlapping grapes. Our future research is to
reconstruct grape information via multiple recognitions with themoving
camera installed in the robot arm to drop down the false detections in
the complex scenarios. Furthermore, the reconstructed grape informa-
tion can be applied for the picking point to correct the robot’s trajectory,
thereby improving the precision and speed of the harvesting robot.

5. Conclusions

In the study, ESP-YOLO based on ELSAN, SE and C3P is proposed to
detect table grapes with higher accuracy, faster speed and lightweight in
complex scenarios. ELSAN is superior to the Mobilenet and Ghostnet in
the detection accuracy of table grapes and inference speed on embedded
platforms. ELSAN can be used as a lightweight block to decrease FLOPs
with high detection accuracy. C3P in the YOLO Neck can slightly
improve the inference speed. Combined with C3P, SEC3 inserted be-
tween ELSAN and SPPF in YOLO can reduce instance-level noise effec-
tively and improve detection accuracy. Soft Alpha_NMS can improve
detection accuracy in dense scenarios.

Compared with the advanced detection methods, ESP-YOLO ach-
ieves higher detection accuracy and speed in complex scenarios, such as
overlap, occlusion and distant shot. Furthermore, ESP-YOLO is validated
on an embedded platform in a grape harvesting robot with a detection
accuracy of 96.3% and a detection speed of 45 ms/image. Therefore,
ESP-YOLO can be acted as a useful tool for harvesting robots to detect
table grapes accurately and quickly in various complex scenarios.
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